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GAUSSIAN PROBABILITY MEASURE DEFINED BY A GENERALIZED RELATIVE DENSITY

ABSTRACT

A generalized gaussian relative probability density ls introduced
in an infinite dimensional linear gpace. Although it 1s zero with
probability one, it achieves to describe an actual probability distri-
bution in another space by the behavior of its maximasa on linear
varieties. The calculus of random functions in terms of variational
problems, which suggested this introduction, is to be the subject of

subsequent reports.
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An elementary property of gaussian probability densities in several
h
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direct and intultive approach possible to gaussian probability distri-

butions in infinite dimensional linear spaces. A gaussian distribution

attr

is described by means of a density,
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the obvious formal generalization of the gaussian density in several

variables. It cannot, of course, be the probability per unit volume
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terms of the behavior of the maxima of this generalized density on

linear varieties. The elementary property which motivates the treatment
turns cut tc be just what is needed to fulfill the hypothesis of a

fundamental theorem of Kolmogorov |1] which assures the existence, in

any of certain larger spaces, of probability measures so described.
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and perhaps contributes a bit to an understanding of the gaussian
distribution.

The densities will be studied further and applications will be

made in subsequent reports.

At this late date no introduction to gaussian distributions is
apt to be totally new. Although th nt t
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cussions principally in that i1t avolds the use of a preferred repre-

sentation of the elements of the linear space. The maximum principle
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need no
neea ne

ct
og
(]
w0
(]

1. In the space RN of N-tuplets u: u,
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e definite quadratic polynomial, a translation

of a positive definite quadratic form K(u):

J(u) = K(u - ub) (2)

density will, for brevity, be described as a density. The values
v 5 + « « 5, V,,, MS N, of any set of independent linear combi-
m

N
£(u): Zi(u) = Z a,,u,1=1,2, .. .M, (3)

are random variables whose simultaneous distribution is described by

a density W(v> which may be found by integrating out the excess
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varlables in However, it may also be obtained simpl
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the condition that the linear
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Theorem 1 If u is a set of gaussian random varlables

having a density (P(u), the density of the values v of

independent linear combinations (3) is

W(v) = max (@Qu) : 4(w) = )
/ l -7 AY at AY AU FA TN
= exp (- 5 min (J(u) : £(u) = v)). (&)



This result becomes apparent when a linear transformation is
made to independent variables of which the first M are linear
combinations of El(u), c e e, zM(u).

So far as the author knows, this simple property of normal
t

distributions has not before been expressly stated. Here it will
serve first to motivate the definition of a generalized density in
an infinite space, and second, to provide a principal cog in the

mechanism by which the generalized density is seen to describe a
probability distribution in a different space, a certain second
conjugate space.

2. ILet S be a real linear space in which there is defined an

inner product (u, v), u, v € S,which is positive definite, i.e.,

(w, u) = " Do, trufo. (5)

Such a space S may be completed to form the unique minimal hilbert
+

space 59 S. A

product as

J(u) = BufF + £(u) + const (6)
. | L ] }
where £(u) is a linear functional bounded with respect to nul .

The definition of the functionals J(u) and £(u) may be extended

continwusly to S in a unique way. The representation theorem
assures the existence of an element ub € S such that
Y4 [N l/ N . L
£L(u) = -~ §(Ub; u) (7)

for all u € S. Then, using the linearity of the inner



J(u) = uu - ubn 2 4+ const. (8)
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¥ - = J(u)
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where J(u) is a positive definite quadratic functional will be
called a generalized relative gaussian probability density, or

briefly, a density. It will be the aim of the following paragraphs
to justify this terminology.

Let S' be the normed conjugate space of S, consisting of all
bounded linear functionals defined on S. To each v'(u) e S'there
corresponds v € S such that v'(u) = (v, u) for all u € S (or S).
dence, in which both norm and linear structure are
invariant, makes it frequently unnecessary to distinguish between

a hilbert space and its conjugate. Here, however, the reader may

find it helpful to emphasize the distinction. Further, 1 9 {ﬁ}
be the algebraic conjugate space of Si, consisting of the linear
functionals, u (u'), not necessarily bounded, defined on S
For these functionals the following extensions of earlier notation
will be used:

Gv') = V(@) - (v, 9). (10)

A
The space S will be the space in which is to be defined the proba-
bility measure described by (3). To each element v' of S' will

M e
then be associated a random variable (10).

Any finite set u u2 s e e e uN' of linearly independent
elements of S' has an N dimensional probability distribution
described by a density w(wl, Wor e ey wN) in the ordinary
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sense that if E is any measurable set of R , the probability that

the N-tuplet N, ul'(u), ug_'(u), Ce e, %'(L) lies in E is
Jf,(V) dw, .+ .. d‘-‘-'N=/]($’w)dwl..d“N. (11)
E /7 N

The density is given in analogy with (1+) by the conditioned supremum

W(W)'—'Wult,*uaf, o ’uN‘ (wl, .. ._.WN)

= sup ((Q(u)u € S, ui'(u) =W, 1=12, ..., N)

= exp - %inf (J(u): ue s, ui'(u) =w,1=12, ..., N).(12)
The supremum may, of course, be replaced by maximum if S is replaced

by S. 1In order to verify that ¥(w), so defined is a gaussian density,
it must be shown the exponent which occurs in (12) is a definite
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by means of which it is possible to express the functionals ui' as

quadratic polynomial. There are N elements

inner products:

uil (u) = (vi, u) for all u e 8. (13)

Any element u € S can be expressed, with real a,, . . . , a,_,
4 N
in the form

<
uo=u,o+ ) sV, o+oT, (14)
=1
where
re8and (vi, r) = 0, 1=12,...,nN - (15)



Then the conditions on the infimum in (12) can be written

N

’ \ - . . -
wJ = (VJ) u) = kv."’ uo) + .L- (v1) vi)ai) (16)
< 1=l v
1=l_’2,’ » N
The statement that the Vis s oo, vy are linearly independent is
equivalent to the non-vanishing of the determinant of the quantities
(vi» v.), 1, =1, . . ., N; and it is seen from (16) that speci-
fying ZV-: u); 3=1, . . ., N, is equivalent to specifying
81y« - e ay Since
~/ - “? € e w2
dlu) = 'u - uou = Lai vy +|r|
.EI_ s u?d
=) (vis v,)a, a, + [r|7, (17)
1,4=1

it is clear that the infimum of J(u) with the a's specified is
obtalned by setting r = 0, and that the value so obtained is positive
and is a quadratic form in 815+ ., aN, or, equivalently, in
Wysoeos e Wy

_~

Finally, in order to Jjustify the term generalized density, it
t.

must be -shown that there exists a probability measure of which the
4213 n WY . - R
array of marginal densities obtained from (12) is a proper description.

This results from a stralghtforward application of the fundamental
theorem of Kolmogorov [l, Ch. IIIJ:

M
Let M be any set. Let R be the space of real functions xp

3 Hos =::;5; W
e "2y N

defined before all u ¢ M. If for every finite subset u
e n the space R of

of M £
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the values of x , x , ... , x , and if these finite dimensional
N “N
distributions are compatible, then there exists a countably additive

+ £
iued, over tne 1

considered as random variables on RM.

In applying this theorem to the present situation the index set M
may be taken as a Hamel basis Z of S', that is, a finitely linearly
independent subset of S' such that every element of S' can be expressed
in & unique way as a finite linear combination of elements of Z. The
compatibility condition, that the given lower dimensional distributions
are obtained in every case by integrating out the excess variables from

the given higher dimensional distributions, is here immediately seen to

be satisfied by virtue of Theorem 1 and the fact thqt, for Nl N,
max sup ((p(u):ui'(u) =k, 1=1,2, ..., N)
KN REREEERY KN ues
1
= gup (q“)(u):‘ui’(u) = Kl, i=1, 2, , "l) (18)
ues

The conclusion may now be drawn that the generalized density describes
a probability measure on the space of functionals on Z. But since 2
is a Hamel basis of S', the linear functionals on S' are one-to-one

near images of the functionals on Z. The generalized density may
thus equally well be said to describe a probability measure on Q, It
is also clear that this measure is independent of the choice of the

mel basis Z. This completes the proof of

11



Theorem 2: A generalized gaussian density (9) defined
on a linear space S: {u} describes by means of the
marginal densities (12) a unique, countably additive
probabllity measure on the space Q'of linear functionals

- - |

ined on the normed conJjugat

g A A

space S' of S, con-
sisting of those linear functionals on S which are
bounded with respect to the norm provided by the given
ined over the borel field

of sets of g generated countably by half spaces, the

sets {3 e Buh)¢ k‘,}u'eS', k real.

3. Either as a consequence of Theorem 2,'or more simply by

repeating the argument with minor amendments the following corollary
is obtained.

A
Corollary: Let V' be a subset of S' and V the space
== e

irt m. Y g I3

f 1lin fun 1s defined on V!'. The generalized

~ 2 N P o %
& dainlcar wicviolr

density (9) describes a unique, countably additive
probability measure in 0 over the borel field of sets
of ¥ generated by half spaces {G e ¥ c(v‘) £ k},

v' eV', k real.

If V' is complete in S', the measure defined in V is an adequate

A
representation of the measure defined in S in the sense described in

the following theorem. For the statement, there is needed the
4
v
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defined on 8 and V are isomorphic in the sense that there
o]

________ een

clagges of equivalen
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WO spaces which measure, inclusion and

W
translation by elements of S are preserved.



Proof: There is a projection of § into ? in which each element of
g, a linear functional on S', is carried into its restriction to V'.
To each measurable set EV of ? let correspond the set ES of g con-
sisting of all elements which are proJjected 1nt9 elements of EV'

A
A sequence of operations on the half spaces of V which defines EV
defines similarly when applied to the corresponding half spaces of
g, a set of ES of the same measure. There remains only the question
whether every measurable set of S is included in this correspondence,
and it will suffice to show that every half space is included, or,
in other words, to show that to each bounded linear functional
u'eS there is an equivalent random variable defined on 3. Since

V' is complete in S', there is a sequence v.' . in V' such

Ve

that“vi’ - u’“ tends to zero. An immediate consequence of (12)
is that the norm of any bounded linear functional on S is the
standard deviation of the random variable it defines. The sequence

ty’ tmmst therefore be reguliar in probability 1n V and defines (see
e.g., Halmos [l] Sec. 22, Theorem E, p. 93) in V a random variable

equivalent to u' (ibid., Theorem C). This completes the proof.

Perhaps it should be emphasized that this isomorphy is not a
mpping of elements. If the space is infinite and if V' is a small
(compared to a Hamel basis) set then it will not be possible to express
any significant portion of the elements of % as linear images of
elements of 0. If S 1s a separable space, then, as Friedrichs and
Shapiro [l, g] have shown, linear mappings of elements can be produced
which work with probability one and provide a realization of the

isomorphy of the measure spaces related by a change of coordinates.
éﬂl/ /A /7) "’—’//’
W hamn
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